next up previous contents
Next: A presentation of the Up: Preliminaries on Dixmier conjecture Previous: Introduction   Contents

Notations

All rings are assumed to be unital, associative. All homomorphisms are assumed to be unital. $ \mathbb{N}=\{0,1,2,3,\dots\}$

For any ring $ R$ and for any positive integer $ l$, we put

$\displaystyle M_l(R)=($the set of $l×#times;l$-matrix with coefficients in $R$.$\displaystyle )
$

For any ring $ k$, we denote by $ A_n(k)$ the Weyl algebra.

$\displaystyle A_n(k)=k\langle
\xi_1,\xi_2,\dots,x_n,\eta_1,\eta_2,\dots,\eta_n \rangle
/(\eta_j\xi_i-\xi_i\eta_j-\delta_{ij}; 1\leq i,j\leq n)
$

where $ \delta_{ij}$ is the Kronecker's delta.

If $ k$ is a field with characteristic $ p$, then we further employ the following notations.

$ Z_n(k)=Z(A_n(k))$     the center of $ A_n(k)$ (Later we prove that $ Z_n(k)$ is actually equal to $ k[\xi_1^p,\xi_2^p,\dots,\xi_n^p,\eta_1^p,\eta_2^p,\dots,\eta_i^p])$.

$ T_i=(\xi_i^p)^{1/p}$

$ U_i=(\eta_i^p)^{1/p}$

$ S_n(k)=Z_n(k)^{1/p}=k^{1/p}[T_1,T_2,\dots,T_n,U_1,U_2,\dots,U_n]$. ($ p$-th roots are taken in the usual sense of commutative algebra. $ S_n(k)$ is a commutative algebra over $ Z_n(k)$.)

$ K_n(k)=Q(Z_n(k))$, the quotient field of $ Z_n(k)$.

$ D_n(k)=A_n(k)\otimes_{Z_n(k)} K_n(k)$

$ L_n(k)=Q(S_n(k))$.

$ B_n(k)=A_n(k)\otimes_{Z_n(k)} S_n(k)$ ( $ \cong M_{p^n}(S_n(k))$)

$ \mathcal V_n(k)=\oplus_{i=1}^{p^n}S_n(k)$

$ E_n(k)=A_n(k)\otimes_{Z_n(k)} L_n(k)$ ( $ \cong M_{p^n}(L_n(k))$)

$ \alpha_i=\xi_i-T_i$

$ \beta_i=\eta_i-U_i$

$ \overline{A_n}$ : a copy of $ A_n$

(Identified with the image of $ \phi$ when $ \phi$ is injective).

$ \overline{Z_n}=Z(\overline{A_n})$ : a copy of $ Z_n$

$ \overline{S_n}$ : a copy of $ S_n$ (extension of $ \overline{Z_n}$)

Similarly we use a notation $ \overline{\xi_i}, \overline{\eta_i}, \overline{T_i}, \overline{U_i}$ to indicate a copy of non-bar counterparts.

For a matrix $ x$, we denote by $ \lambda(x),\rho(x),\operatorname{ad}(x)$ the left action, the right action, and the adjoint action by $ x$, respectively.

$\displaystyle \lambda(x)y=xy, \quad \rho(x)y=yx , \quad ad(x)y=xy-yx
$



Subsections
next up previous contents
Next: A presentation of the Up: Preliminaries on Dixmier conjecture Previous: Introduction   Contents
2003/3/3