next up previous
Next: irreducible representations of the Up: Representations of Weyl algebras Previous: Representations of Weyl algebras

differential operators in positive characteristics

We begin by noting the following easy fact.

LEMMA 7.1   Let $ k$ be a field of characteristic $ p\neq 0$ . Let $ n$ be a positive integer. Then we have

$\displaystyle (\frac{\partial}{\partial x_i})^p f(x)=0 \quad (i=1,2,\dots,n).
$

for any polynomial $ f\in k[x_1,x_2,\dots,x_n]$

In short, we have $ \partial_i^p=0$ . This explains why we defined $ A_n(k)$ by a generator and relation rather than a ring of differential operators.

Of course, differential operations give important examples of representation of the Weyl algebras.

LEMMA 7.2   Let $ k$ be a field of characteristic $ p\neq 0$ . Let $ n$ be a positive integer. There is a finite dimensional representation $ \Phi$ of $ A_n(k)$ on $ k[x_1,x_2,\dots,x_n]/(x_1^p,x_2^p,\dots,x_n^p)$ defined as follows.

$\displaystyle \Phi(\gamma_i) f=x_i f, \qquad
\Phi(\gamma_{n+i}) f=\partial_i \cdot f \qquad (i=1,2,\dots,n)
$

LEMMA 7.3   Let $ k$ be a field of characteristic $ p$ . We have the following facts.
  1. $ \gamma_j^p$ belongs to the center of $ A_n(k)$ for any $ j\in\{1,2,3,\dots,2n\}$ .
  2. More precisely, the center $ Z_n(k)=Z(A_n(k))$ of the ring $ A_n(k)$ is given by

    $\displaystyle Z_n(k)=k[\gamma_1^p,\gamma_2^p,\gamma_3^p,\dots,\gamma_{2n}^p].
$

  3. $ A_n(k)$ is a free $ Z_n(k)$ -module of rank $ p^{2n}$ .
  4. Let $ \mathfrak{a}_0 $ be an ideal of $ A_n(k)$ defined as

    $\displaystyle \mathfrak{a}_{0}=(\gamma_1^p,\gamma_2^p,\dots,\gamma_{2 n}^p).
$

    Then we have

    $\displaystyle \mathfrak{a}_{0}=
\sum_{j=0}^{2 n}A_n(k)\gamma_j^p
$

  5. Any element of $ A_n(k)/\mathfrak{a}_{0}$ is written uniquely as

    $\displaystyle \sum_{j_1,j_2,j_3,\dots,j_n=0}^{p-1} a_{j_1 j_2 j_3\dots j_{2n}} ...
..._2^{j_2}
\gamma_3^{j_3}\dots
\gamma_{2 n-1}^{j_{2 n-1}}
\gamma_{2 n}^{j_{2 n}}
$

    for some $ a_\bullet\in k$ .

LEMMA 7.4   Let $ \Phi$ be the representation given above. The kernel of $ \Phi$ is equal to

$\displaystyle \mathfrak{a}_{0}=(\gamma_1^p,\gamma_2^p,\dots,\gamma_n^p)
$

$ \Phi$ gives rise to an algebra isomorphism

$\displaystyle \overline{\Phi}:A_n(k)/\mathfrak{a}_{0}\cong M_{p^n}(k).
$

PROOF.. That $ \mathfrak{a}_0 $ is contained in $ \operatorname{Ker}(\Phi)$ is obvious. Thus we obtain an well-defined algebra homomorphism $ \overline{\Phi}$ .

To see the injectivity of $ \overline{\Phi}$ , we employ a lexicographic order on multi index sets and see that

\begin{displaymath}
\partial^I x^J=
\begin{cases}
0 &\text{ if } I>J\\
I! &\text{ if } I=J
\end{cases}\end{displaymath}

holds for any multi-indices $ I,J \subset \{0,1,2,3,\dots,p-1\}^n$ . Then by using the previous sublemma we see that $ \overline{\Phi}$ is indeed injective.

The surjectivity of $ \overline{\Phi}$ is verified by counting dimensions.

$ \qedsymbol$


next up previous
Next: irreducible representations of the Up: Representations of Weyl algebras Previous: Representations of Weyl algebras
2007-04-20