next up previous
Next: Schur's lemma Up: Representations of Weyl algebras Previous: differential operators in positive

irreducible representations of the Weyl algebras

By translating the irreducible representation $ \Phi$ in the previous section, we obtain a family of irreducible representations.

LEMMA 7.5   Let $ k$ be a field of characteristic $ p\neq 0$ . Let $ n$ be a positive integer. Let $ c\in k^{2 n}$ . Then there is a finite dimensional representation $ \Phi_{c}$ of $ A_n(k)$ on $ k[x_1,x_2,\dots,x_n]/(x_1^p,x_2^p,\dots,x_n^p)$ defined as follows.

$\displaystyle \Phi(\gamma_i) f=(x_i+c_i) f, \qquad
\Phi(\gamma_{n+i}) f=(\partial_i+c_{n+i}) \cdot f \qquad (i=1,2,\dots,n)
$

Then from what we have shown in the previous section, we obtain the following results.

LEMMA 7.6   Let $ k,c, \Phi_{c}$ as in Lemma above. Then:
  1. The kernel of $ \Phi_c$ is given as

    $\displaystyle \operatorname{Ker}(\Phi_{c})=\mathfrak{a}_{c}=
(\gamma_1^p-c_1^p,\gamma_2^p-c_2^p,\gamma_3^p-c_3^p,\dots,
\gamma_{2 n}^p-c_{2 n}^p).
$

  2. $ \Phi_{c}$ gives rise to a $ k$ -algebra isomorphism

    $\displaystyle \overline{\Phi_{c}}:
A_n(k)/\mathfrak{a}_{c} \cong M_{p^n}(k).
$

  3. $ \Phi_{c}$ is an irreducible representation of $ A_n(k)$ .



2007-04-20