next up previous contents
Next: injectivity for almost all Up: Preliminaries on Dixmier conjecture Previous: injectivity()   Contents

multidegree monoids and lattices

For any element $ f=\sum _{I,J} f_{I J}\xi^I \eta^J \in A_n(k)$, we denote by $ \operatorname{multideg}(f)$ the multidegree of $ f$. That means,

$\displaystyle \operatorname{multideg}(f)
=\max \{ (I,J) \in \mathbb{N}^{2n} ; f_{I J} \neq 0\},
$

where we employ the lexicographic order on $ \mathbb{N}^{2n}$. For any subalgebra $ A$ of $ A_n(k)$, we define its multidegree monoid $ \operatorname{multideg}(A)$ as follows.

$\displaystyle \operatorname{multideg}(A)=\{\operatorname{multideg}(f); f\in A\}.
$

It is a sub monoid of $ \mathbb{N}^{2n}$. We use several norms for indices in $ \mathbb{N}^{2n}$. Among them is the ``$ \ell^1$-norm'' $ \vert t_1\vert+\dots+\vert t_{2n}\vert$. of $ (t_1,\dots,t_{2n})$ The total degree $ \operatorname{totaldeg}(f)$ of an element $ f$ of $ A_n(k)$ is then defined to be the $ \ell^1$-norm of $ \operatorname{multideg}(f)$. By a total degree of a derivation or an algebra endomorphism of $ A_n(k)$ we mean the maximum of the total degree of the image of the standard generators $ \xi_1,\dots,\xi_n,\eta_1,\dots,\eta_n$.

Definition 2   For any subset $ S$ of $ \mathbb{N}^{2n}$, we denote by $ S_{\leq d}$ the set of all elements of $ S$ whose $ \ell^1$-norms are less than or equal to $ d$. We denote by $ \operatorname{{}^aHF}$ "the affine Hilbert function" of $ S$, that is,

$\displaystyle \operatorname{{}^aHF}_S(i)=\char93  (S_{\leq i}) \qquad ( i \in \mathbb{N})
$

For any subalgebra $ A$ of $ A_n(k)$, we define its affine Hilbert function $ \operatorname{{}^aHF}_A$ as the affine Hilbert function $ \operatorname{{}^aHF}_{\operatorname{multideg}{A}}$ of multidegree of $ A$.

Lemma 18   Let $ m$ be a positive integer. Let $ S$ be a sub monoid of $ \mathbb{N}^m$. Let $ L=\mathbb{Z}S$ be the submodule of $ \mathbb{Z}^n$ generated by $ S$. Then the following conditions are equivalent.
  1. There exists a positive real number $ \epsilon$ such that $ \operatorname{{}^aHF}_S(i) \geq \epsilon i^{m}$ for all $ i»0$.
  2. $ \operatorname{rank}(L)=m$

$ (2)\implies (1)$: Take $ I_1,I_2,\dots,I_m\in S$ which are linearly independent over $ \mathbb{Q}$. Put $ c=\max ( \vert\vert I_1\vert\vert _{\ell^1}, \vert\vert I_2\vert\vert _{\ell^1},\dots, \vert\vert I_n\vert\vert _{\ell^1}) $. Then a map $ \alpha$ defined by

$\displaystyle \alpha:\mathbb{N}^m \ni (a_1,\dots,a_m)\mapsto a_1 I_1+a_2 I_2+\dots + a_m I_m \in S
$

is injective and satisfies $ \alpha (\mathbb{N}^m_{\leq d})\subset S_{\leq c d}$ for every positive integer $ d$. Thus we have

$\displaystyle \operatorname{{}^aHF}_S(d)\geq \binom{m+[d/c]}{m} \geq \frac{d^m}{(c+1)^m m!}
$

when $ d$ is large enough. ($ [\bullet]$ denotes the Gaussian symbol.)

$ (1)\implies (2)$: Assume on the contrary that $ r=\operatorname{rank}(L)<m$. Then the module $ L$, being torsion free, is isomorphic to $ \mathbb{Z}^r$. Let $ I_1,\dots,I_r$ be elements of $ S$ which forms a $ \mathbb{Z}$-basis of $ L$. Then a map

$\displaystyle \beta:
\mathbb{R}^r\ni (t_1,t_2,\dots,t_r) \mapsto (t_1 I_1+ t_2 I_2 +\dots + t_r I_r)\in \mathbb{R}^m
$

is an injective linear map from $ \mathbb{R}^r$ to $ \mathbb{R}^m$. Thus we may easily see that there exists a real number $ M$ such that

$\displaystyle \vert\vert\sum_{i=1}^r t_i I_i \vert\vert _{\ell^1}<1 \implies \vert\vert(t_1,\dots,t_r)\vert\vert _{\ell^1}<M
$

This implies that $ \char93  S_{<d}$ is smaller than the number of elements of $ \mathbb{Z}^r$ which are shorter (in $ \ell^1$-norm) than $ M d$. $ \qedsymbol$

ARRAY(0x8f2aaf8)


Subsections
next up previous contents
Next: injectivity for almost all Up: Preliminaries on Dixmier conjecture Previous: injectivity()   Contents
2003/3/3