next up previous contents
Next: Bibliography Up: multidegree monoids and lattices Previous: multidegree monoids and lattices   Contents

injectivity for almost all primes

Lemma 19   Let $ k$ be a field. Assume $ \phi:A_n(k)\to A_n(k)$ is injective (which is always the case if $ \operatorname{char}k=0$). Then $ \operatorname{rank}(\mathbb{Z}\operatorname{multideg}(\phi(A_n(k)))=2 n$.

Let $ N$ be the maximum of total degrees of elements $ \phi(\xi_1),\dots,\phi(\xi_n),\phi(\eta_1),\dots,\phi(\eta_n)$. Then we see that

$\displaystyle \phi(A_n(k)_{\leq i})\subset A_n(k)_{\leq N i}
$

holds for any $ i>0$. Thus for any $ i>0$, we have

$\displaystyle \operatorname{{}^aHF}_{\phi(A_n(k))} (Ni)\geq \operatorname{{}^aHF}_{A_n(k)}(i) =\binom{i+2n}{i}.
$

This together with Lemma 18 gives the result. $ \qedsymbol$

Lemma 20   Let $ A$ be a subalgebra of a polynomial algebra $ P=k[X_1,X_2,\dots,X_m] $ over a field $ k$. If there exists an positive integer $ c$ such that

$\displaystyle \dim (A_{\leq d}) \geq \frac{1}{c m!} d^m
$

holds for all integers $ d>0$, then we have

$\displaystyle [Q(P):Q(A)]\leq c
$

Suppose on the contrary that $ [Q(P):Q(A)] >c$. Take elements $ f_1,\dots,f_{c+1}\in Q(P)$ which are linearly independent over $ Q(A)$. By multiplying a ``common denominator'', we may assume that $ f_i$ are elements of $ P$. Then it follows that the sum

$\displaystyle f_1 A + f_2 A + \dots +f_{c+1} A
$

is direct in $ P$. Let $ M$ be the maximum of total degrees of $ f_1,\dots,f_{c+1}$. Then the directness above implies that an inequality

$\displaystyle \dim \left((f_1 A +f_2 A +\dots +f_{c+1}A)_{\leq d}\right )
\geq (c+1) \dim A_{\leq(d-M)}
$

holds for any integer $ d>M$. Since the left hand side is not greater than $ \dim P_{\leq d}$, we obtain the following inequation

$\displaystyle \frac{d^m}{m!}+O(d^{m-1})\geq (c+1)\frac{1}{c m!}(d-M)^m
$

which leads to a contradiction when $ d$ is large enough. $ \qedsymbol$

Proposition 2 (injectivity for almost all primes)   Let $ \mathfrak{K}$ be an algebraic number field, $ \mathfrak{O}=\mathfrak{O}({\mathfrak{K}})$ be the ring of integers in $ \mathfrak{K}$. suppose we are given an $ \mathfrak{K}$-algebra endomorphism $ \phi$ of $ A_n(\mathfrak{K})$.

Then the multidegree monoid of the image $ \operatorname{Image}(\phi)$ has rank $ 2n$. Furthermore, for almost all prime ideals $ \mathfrak{p}$ of $ \mathfrak{O}$, we have the following facts.

  1. $ \phi$ induces an $ k(\mathfrak{p})$-algebra endomorphism $ \phi_{\mathfrak{p}}$ of $ A_n(k(\mathfrak{p}))$ (where $ k(\mathfrak{p})=\mathfrak{O}/\mathfrak{p}$ is the residue field of $ \mathfrak{p}$).
  2. The multidegree monoid of the image $ \operatorname{Image}(\phi_{\mathfrak{p}})$ has rank $ 2n$.
  3. $ \phi_\mathfrak{p}$ is injective.
  4. There exists a constant $ C$ such that $ \operatorname{geomdeg}(\phi_\mathfrak{p})\leq C$ for all $ \mathfrak{p}$.

The first statement is an easy consequence of Lemma 19. This in turn implies (2) (except for finite primes). In precise, let $ x_1,x_2,\dots,x_n $ be elements in $ A_n(\mathfrak{K})$ such that multi degrees of $ \phi(x_1),\phi(x_2),\dots,\phi(x_{2n})$ are linearly independent. Then for almost all primes, their reductions $ x_1,x_2,\dots,x_n $ are defined as elements of $ A_n(k(\mathfrak{p}))$ and their multi degrees stays invariant under the reduction.

We apply Lemma 18 to see that there exists a positive real number $ \epsilon$ which is independent of $ \mathfrak{p}$ such that an inequality

$\displaystyle \dim(\phi_\mathfrak{p}(A_n(k))_{\leq s} )\geq \epsilon s^{2n}
$

holds for any large integer $ s$.

(1) is already proved in subsection 3.1. To prove (4), we denote by $ k=k(\mathfrak{p})$ the quotient field with characteristic $ p(>0)$. Since $ A_n(k)$ is a free $ Z_n(k)$-module of rank $ 2n$ with generators $ \{\xi^I\eta^J; \vert\vert I\vert\vert _{\ell^\infty},\vert\vert J\vert\vert _{\ell^\infty}\leq p-1\}$, we have

$\displaystyle \phi_\mathfrak{p}(Z_n(k)) \cdot
(\sum_{\vert\vert I\vert\vert _{\...
...phi_\mathfrak{p}(\xi)^I\phi_\mathfrak{p}(\eta)^J) = \phi_\mathfrak{p}(A_n(k)).
$

Then Corollary 7 gives us an relationship of total degrees of both hands sides. Namely, there exists a positive number $ N$ such that

$\displaystyle \phi_\mathfrak{p}(Z_n(k))_{\leq s+N} \cdot
(\sum_{\vert\vert I\ve...
...\xi)^I\phi_\mathfrak{p}(\eta)^J)
\supset
\phi_\mathfrak{p}(A_n(k))_{\leq s}
$

holds for any positive integer $ s$.

Combining these, we obtain

$\displaystyle \dim (\phi_\mathfrak{p}(Z_n(k))_{\leq s+N}) p^{2n} \geq \epsilon s^{2n}
$

Then we use Lemma20 to see that (4) is true. (One should be very careful about grading of $ Z_n(k)$ here. degrees of generators $ \xi_i^p, \eta_i^p$ of $ Z_n(k)$ are all $ p$. not $ 1$.) (3) follows from (4) and a consideration on transcendence degrees.

$ \qedsymbol$

ARRAY(0x8f0db98)ARRAY(0x8f0db98)ARRAY(0x8f0db98)


next up previous contents
Next: Bibliography Up: multidegree monoids and lattices Previous: multidegree monoids and lattices   Contents
2003/3/3