next up previous contents
Next: definition of reduced trace Up: First properties of Weyl Previous: A splitting algebra of   Contents

The quotient field of the Weyl algebra

Let $ k$ be a field of characteristic $ p>0$. There is a nice ``quotient field of the Weyl algebra $ A_n(k)$.

Lemma 6   Let $ K_n(k)$ be the quotient field of the center $ Z_n(k)$ of the Weyl algebra $ Z_n(k)$. Then the following statements hold.
  1. $ D_n(k)=A_n(k)\otimes_{Z_n(k)} K_n(k)$ is a skew field.
  2. $ \dim_{K_n(k)} D=p^{2n}$.
  3. $ M_{p^n}(L_n(k))$ may be regarded as a $ p^{2n}$-dimensional vector space over $ D$ with a basis $ \{T^IU^J ; \vert\vert I\vert\vert _{\ell^\infty}\leq p-1, \vert\vert J\vert\vert _{\ell^\infty}\leq p-1\}$.

(1) $ D_n(k)$ is a simple algebra with no zero-divisor except for 0. Then we use Wedderburn's structure theorem.

(2),(3): we may easily see that

$\displaystyle \dim_{K_n(k)} D_n(k)\leq p^{2n} , \quad \dim_{D_n(k)} M_p(L_n(k))\leq p^{2n}.
$

On the other hand we have

$\displaystyle \dim_{K_n(k)}M_p(L_n(k))=p^{4n}
$

$ \qedsymbol$ ARRAY(0x8e89d54)

2003/3/3