next up previous contents
Next: Algebra endomorphisms and centers Up: First properties of Weyl Previous: reduction to characteristic   Contents

Weyl algebras over fields of positive characteristics and their centers

Lemma 3   Let $ k$ be a field of characteristic $ p$. We have the following facts.
  1. $ \xi_i^p, \eta_j^p$ belongs to the center of $ A_n(k)$.
  2. More precisely, the center $ Z_n(k)=Z(A_n(k))$ of the ring $ A_n(k)$ is given by

    $\displaystyle Z_n(k)=k[\xi_1^p,\dots,\xi_n^p,\eta_1^p,\dots,\eta_n^p].
$

  3. $ A_n(k)$ is a free $ Z_n(k)$-module of rank $ p^{2n}$.
  4. Let $ a=(a_1,\dots,a_n), b=(b_1,\dots b_n)$ be elements of $ k^n$. Let $ I_{a,b}$ be an ideal of $ A_n(k)$ generated by $ (\xi_1-a_1)^p,\dots, (\xi_n-a_n)^p,(\eta_1-b_1)^p,\dots, (\eta_n-b_n)^p$. Then we have

    $\displaystyle A_n(k)/I_{a,b} \overset{\pi_{a,b}}{\cong } M_{p^n}(k).
$

  5. If the field $ k$ is algebraically closed, then any maximal (both-sided) ideal of $ A_n(k)$ is of the form $ I_{a,b}$ above.

(1) easy.

(2) Write

$\displaystyle f= \sum_{I,J} f_{I J} \xi^I \eta^J
$

and compute $ [\xi_i,f]$ and $ [\eta_j,f]$ term by term.

(3)

$\displaystyle A_n(k)=\bigoplus_{0\leq i_1,\dots,i_n,j_1,\dots,j_n \leq p-1} Z_n...
..._3}\dots
\xi_n^{i_n}
\eta_1^{i_1}
\eta_2^{i_2}
\eta_3^{i_3}\dots
\eta_n^{i_n}.
$

(4) is a direct consequence of Lemma 1. For the reference purposes, we record here another explanation. By considering a translation in $ \xi$- and $ \eta$-directions, we may well assume $ a=b=0$. Consider an action of $ A_n(k)$ on $ A=k[\xi_1,\dots,\xi_n]/(\xi_1^p,\dots,\xi_n^p)$ defined by the following formula.

$\displaystyle P.f=P(\xi_1,\dots,\xi_n, \partial_1,\dots,\partial_n).f$ (2)

We may then verify that this gives a well-defined action of $ A_n(k)/I_{0,0}$ on the $ p^n$-dimensional vector space $ A$.

If an element $ P$ in $ A_n(k)/I_{0,0}$ satisfy

$\displaystyle P.1=0, P.\xi=0 ,\dots, P.\xi^{p-1}=0
$

then we may easily see that $ P=0$. This means the homomorphism

$\displaystyle \pi_{0,0}: A_n(k)/I_{0,0} \to \operatorname{End}_{\mbox{k}\operatorname{-module}}(A)
$

is injective. A dimension argument now shows that $ \pi_{0,0}$ is a bijection.

(5) Let $ M$ be an ideal of $ A_n(k)$. We consider a sheaf $ \widetilde{(A_n(k)/M)}$ of algebras on $ \operatorname{Spec}(Z_n(k))$ which corresponds to the $ Z_n(k)$-module $ A_n(k)/M$. Since $ A_n(k)$ is a finitely generated module over a polynomial ring $ Z_n(k)$, There exists a closed point $ \mathfrak{m}$ of $ Z_n(k)$ such that fiber $ (\widetilde{(A_n(k)/M)}\vert\mathfrak{m})=A_n(k)/(M+\mathfrak{m} A_n(k)) $ is nonzero. Since $ M$ is maximal, this implies that $ \mathfrak{m} \subset M$. The rest of the proof is easy (Use Nullstellensatz.)


next up previous contents
Next: Algebra endomorphisms and centers Up: First properties of Weyl Previous: reduction to characteristic   Contents
2003/3/3